Article5:Inter-specificandintra-specificcomparisoninthe responses to UV-B radiation and to water deficit inTrifolium (Leguminosae)/三叶草属(Trifolium)植物种间和种内对 UV-B 辐射和干旱等逆境生理的比较性研究
Author: Liu Huan, Master of Science (First Class Honours), The University of Auckland,
Adviser: Hofmann, R.W., Lincoln University, New Zealand.
Abstract Caucasian clover (Trifolium ambiguum M. Bieb.) and two populations of white clover (Trifolium repens L.) were grown for 9 weeks with supplemental application of UV-B radiation at a rate of approximately 13 kJ m-2 day-1. Parameters of total aerial biomass, net photosynthesis, conductance, transpiration, water use efficiency, relative chlorophyll content, water solute potential ΨW, canopy temperature were tested in this research. Drought stress was also simulated during the last four weeks. Compared with the control, the total aerial (Dry Matter) DM production across clovers decreased by 81% under drought condition. However, Caucasian and Tienshan clover showed higher drought tolerance in terms of osmotic adjustment. Under well-water condition, the total aerial biomass yield of Tienshan clover was not significantly affected by UV- B, while Kopu II was sensitive to UV-B. By the intra-specific comparison within white clover species, Tienshan clover, which showed less UV-B sensitivity and higher tolerance to drought, was less productive and had a original habit with multiple forms of stress. Further more, drought stress reduced UV-B sensitivity in both clover species. On the other hand, UV-B treatment also improved water-deficit tolerance across clovers by 43% under drought. In comparison, for Caucasian clover, UV-B increased the total aerial biomass yield by 84% under drought conditions. This indicated that UV- B might lead to a higher improvement of drought tolerance in Caucasian clover than in white clover. However, results also indicated that the pathways of physiological adjustments would differ between UV-B radiation and drought stress conditions. Key Words: Caucasian clover, White clover, UV-B Radiation, Drought Stress, Physiological adjustment pathway
摘要:一个高加索三叶草 (Trifolium ambiguum M. Bieb.)的种群和两个白三叶草(Trifolium repens L.)的不同种群在UV-B 辐射和干旱的模拟实验室条件中栽培了9 个星期。总体生物量干重,初级光合作用,大气传导率,蒸腾量,水利用效率, 树冠温度,叶绿素相对含量、溶质势能等参数在实验室条件下进行了测试。 与适宜生长条件相比,所有三叶草植物在干旱逆境中生长的总体干重平均降低了81%。 然而,高加索三叶草和天山白三叶草以渗透调节的方式显示出了更高的抗旱性。在水分充足的条件下,天山白三叶草生长的总体干重并无显著地受到UV-B 辐射的影响,然而 Kopu II 白三叶草品种却对 UV-B 辐射很敏感,说明天山白三叶草显示出了对 UV-B 辐射和干旱的较强抗逆性。此外,天山白三叶草起源于一个充满各种逆境生理条件的生境中,并且生产力较低。干旱条件降低了三叶草植被对UV-B 辐射的敏感性。同样的,UV-B 辐射增强了三叶草植被对干旱的抗逆性。比较而言,UV-B 辐射对高加索三叶草在抗旱性的提高更为显著。然而, 实验结果表明了三叶草属植物分别在UV-B辐射和缺水等不同逆境条件下的生理调节机制和路径应该有所不同。 关键词:高加索三叶草,白三叶草,UV-B辐射,干旱逆境,生理调节路径
论文下载 (提取码: yuaq,百度网盘链接与提取码仅仅允许本香港主机网站用户使用,禁止转载)
This is the revised materials in book “Proceedings for Degree of Postgraduate Diploma in Environmental Science (3rd Edition).” published in 2016. Revised on 04/01/2021. Thirdly Revised on 08/01/2022.
ReferencesBarbour, M., Caradus, J. R., Woodfield, D. R., & Silvester, W. B., (1999). Water stress and water use efficiency of ten white clover cultivars. Grassland Research and Practice Series (6): 159-162. Black A. D., Moot, D. J., & Lucast, R. J., (2006). Spring and autumn establishment of Caucasian and white clovers with different sowing rates of perennial ryegrass. Grass and Forage Science, 61, 430-441. Delauney.A.J.,Verma,D.P.S., Proline biosynthesis and osmotic regulation in plants[J].Plant J, 1993, 4(2):215-223. Hofmann, R.W., Campbell, B. D., Bloor, S. J., Swinny, E. E., Markham, K. R., Ryan, K. G., & Fountain, D. W. (2003). Responses to UV-B radiation in Trifolium repens L. – physiological links to plant productivity and water availability. Plant Cell and Environment (2003) 26, 603-612. Hofmann, R. W., Campbell, B. D., & Fountain, D. W. (2003). Sensitivity of white clover to UV-B radiation depends on water availability, plant productivity and duration of stress. Global Changes Biology (2003) 9,473-477. Hofmann, R. W., Campbell, B. D., Fountain, D. W., Jordan, B. R., Greer D. H., Hunt, D. Y., & Hunt, C.L., (2001). Multivariate analysis of intraspecific responses to UV-B radiation in white clover (Trifolium repens L.). Plant Cell and Environment (2001) 24, 917-927. Hofmann, R. W., Swinny, E. E., Bloor, S. J., Markham, K. R., Ryan, K. G., Campbell, B. D., Jordan, B. R., & Fountain, D. W. (2000). Responses of nine trifolium repens L. Populations to Ultraviolet-B radiation: Differential flavonol glycoside accumulation and biomass production. Annals of Botany 86: 527-537, 2000. Lindroth, R. L., Hofmann, R.W., Campbell, B. D., McNabb W.C., & Hunt, D. Y., (2000). Population differences in Trifolium repens L. response to ultraviolet-B radiation: foliar chemistry and consequences for two lepidopteran herbivores. Oecologia (2000) 122: 20-28. Nogues, S., Allen, D. J., Morison, J. I. L., & Baker, N. R. (1999).Characterization of stomatal closure caused by Ultraviolet-B radiation. Plant Physiology, October 1999, Vol. 121, pp. 489–496. Rozema, J., Staaij, J. Van de., Bjorn, L. O., & Caldwell, M. (1997). UV-B as an environmental factor in plant life: stress and regulation. TREE vol. 12, no. 1 January 1997. Taiz, L., & Zeiger, E., (2006). Plant physiology, 4th ED. Loughborough, UK: Cambridge University Press.
|