标题: Essay: original review of high-dimensional spaces and astronomy theories in m.. [打印本页]

作者: hliu092    时间: 2023-1-29 10:47
标题: Essay: original review of high-dimensional spaces and astronomy theories in m..
2023. Copyrights Certificate Registered by Brock Chain Technology: Brock Chain ID.(32de2f6b7972a6d4d5fd02ebe446bb8f102ab814e436c57a7a9db546a7f27cf4) ;

This is unfinished manuscript. All copyrights reserved. Coping and Transferring is forbidden.

All the copyright materials have been tested by Turnitin (international) before online open access.

Latest revised on 24/07/2023 a;b.

Essay: original review of high-dimensional spaces and astronomy theories in modern physics

Author: Liu Huan (1983-), Master of Science (First Class Honours), The University of Auckland.

Key points of this article:

This paper firstly summarizes the representative theories established on the basis of high-dimensional space [1] in modern physics, which are classified into two parts in this paper. The first part of theories are established on the basis of time axis, from the first proposal of relativity based on the space-time coordinate system [2], to the exploration of macro-space dimension (the 11 dimension division of universe space proposed by Hawking [3]), and further to the high-dimensional exploration in the micro-space (multi-dimensional quantum space proposed by String theory[4]); The second part of theories are demonstrated without considering time axis as the compulsory factor, so the physics theories of parallel spacetimes [5], dark matter [6], antimatter [7], universal gravity [8], and symmetric cosmic space [9] are all reviewed in this essay. On the basis of the review, this paper compares the original viewpoints proposed by me [10][11][12][13][14] with the previous theories, and discusses and extrapolates the viewpoints by empirical method. Finally, this paper further discusses the related theories of the origin and development of the universe as well as the gestation and development stage of celestial bodies.

In my previous paper, I have discussed that under the effect of dark matter adhesion force on the fourth dimension axis, positively charged protons and their paired electrons do spring-like longitudinal wave motion on the fourth dimension axis to generate pulse waves. This kind of pulse wave is the origin of radiation such as α Rays, β Rays, γ Rays [15]. The generation of gravitational waves [16] is the space-time bending phenomenon detected under the condition that the mass density and weight of celestial bodies increases significantly. This paper further proposes that the elementary particle motion model in the celestial body of this scenario is similar to that of the ray: the spring-type longitudinal wave motion is performed on the fourth dimension axis, and the pulse wave is generated. However, due to the high mass density of the celestial body that generates the gravitational wave and the aging effect of dark matter, the gravitational wave is low-frequency and long wave length, compared with the ray.

I have previously discussed that dark matter is the origin of universal gravity [10]. The astronomical observation of dark matter is closely related to the phenomenon of anti universal gravity law[6]. Therefore, this paper further believes that the phenomenon of anti universal gravity law observed in astronomy is caused by the uneven distribution of dark matter in the magnetic field intensity between celestial bodies.

本文首先总结了现代物理学中建立在高维度空间[1]的代表性学说,并且将这些代表性理论分为两类。第一类理论是建立在时间轴的基础上,从相对论的时空坐标系的首先提出[2],到人类对宏观空间的高维度探究(霍金对宇宙空间的11维度划分[3])、再到微观物理学领域的高维度探索(弦理论的量子多维度空间[4]);第二类理论的论证可以不把时间轴作为必须考虑的因素,因此平行空间[5]、暗物质[6]、反物质[7]、万有引力[8]、对称宇宙空间[9]的物理学理论都在本文进行了综述。本文在综述基础上,对比了本人之前提出的与这些理论相关的原创型观点 [10][11][12][13][14],并且以反证法进行实证性论述。最后,本文进一步论述了宇宙起源与发展的相关理论、天体孕育与发展阶段的相关理论。



High Dimensions of Spaces
High dimensional space refers to the multi-dimensional spaces that is quantized, including micro, macro, and cosmological quantized spaces. For example, atoms and microscopic particles such as electrons, protons, neutrons, and mesons that are smaller than atoms, so their internal spaces are classified into the microscopic quantization space. The earth and astronomy science community has found that there is a lot of ‘dark matter’ in the universe, which is correspondingly defined as the quantization space of cosmology. The concepts of ‘points, lines, and surfaces’ in mathematics are only the forms of abstract thinking that helps to interpret the high dimensional spaces. For the spaces of three dimensions, the one-dimensional space is a straight line, the two-dimensional space is a plane, and the three-dimensional space is a solid space. The spatial reasoning of the multi-dimensional axis in mathematics is a kind of abstract expression of high-dimensional space, but is not its own form of existence [1].
What about four dimensions? As it is well known, the fourth dimension is time that is the most popular definition in earth people. From the mathematical thinking, the physical parameter ‘time,’ as a mathematical coordinate, establishes the arrangement of three-dimensional space on another one-dimensional time axis. Similarly, people can usually argue that four dimensions are more advanced than three dimensions. People have always been afraid of one thing, which is whether there are intelligent creatures living in the fourth dimension or even in higher dimensions, because the world that people perceive is three-dimensional, which eliminates the imagine of our minds to higher dimensional spaces. People usually cannot accept the existence of a creature that we cannot see, but people are seemingly within its grasp. Unfortunately, from the spatial perspective, people living in three-dimensions are inferior to them. In their eyes, we are just like the poor tiger we draw on the paper and cannot escape from our three-dimensional space, so precisely the three-dimensional space where we live traps our thinking [1].
According to the theory of relativity proposed by Einstein, there may be only one way to break through our three-dimensional boundaries, that is to exceed the speed of light. In the world of high-dimensional creatures, the lowest speed is equal to the speed of light, because the speed of light is the boundary point of dimensions, and they always have the results of something before its cause, which is certainly something people cannot accept. Our brain is limited to causal relationships in three-dimensional space, so how can we have consequences first and then causes? This consequence-causes inversion logic proposed by the theory of relativity cannot be proven [1].
Finally, there are several historic stories (for example, the missed air craft and train) recorded as evidences to support that existence in another time-spaces of our world [1].
In modern physics, one of the representative theories with regards to the classification of universal dimension is M theory, which classifies the universe into eleven dimensions, composed of vibrating planes [3].
Once there are knowledge with regards to the fourth dimension spaces in public domain website in Chinese Mainland above, my article must follow their steps to further discuss the existence in high dimensional spaces. Firstly, as pointed above, the high-dimensional coordinates of mathematics is just the abstract expression of high dimensional spaces other than its real existence, so some people tend to overstate the dimensional number of spaces (such as 11 dimensions classification in M theory). My article only proposes 5 dimensional spaces in total according to the physical properties of magnetism. As demonstrated in another article [11], the fourth dimensional space is called parallel space, because both the magnetic field and electric field display as parallel field lines on the fourth dimensional axis, but the transmission direction is opposite to each other. In the fourth dimensional spaces, both the positive and negative poles of magnetism is distinct without boundary in the middle between both of them, but the boundary of both Yin and Yang poles of magnetism exist in the fifth dimension of spaces, in which the Yin and Yang poles are not distinct and distinguished.
There is another issue with regards to creatures in high dimensional spaces as discussed on the public domain website in Chinese Mainland above [1]. My article further proposes that creatures that survive in three dimensional spaces are mainly for growth and reproduction purposes. For the wild populations of creature species with advanced physiological evolution, a small proportion of population may be selected by their ancestors to send back into three dimensional spaces for re-growth and reproduction purposes, which is defined as the key process of ‘natural selection.’ Consequently, in our three dimensional spaces there are some wild populations with advanced physiology evolution, which have already been to fourth dimensional spaces, so that they may be not afraid of it. However, this natural selection does not exist in human species again due to historic reasons.         
Relativity and Einstein
‘Theory of Relativity’ is the physical theory established by Einstein on the basis of spacetime and gravity, proposing concepts such as ‘simultaneous relativity’, ‘four-dimensional spacetime’, and ‘curved spacetime’[2].
According to the different research objects, relativity can be divided into ‘Special Relativity’ and ‘General Relativity.’ The background spacetime of the special relativity is straight with its curvature tensor of zero, whereas the background spacetime of the general relativity is curved, so its curvature tensor is not zero [2].
A very important conclusion of relativity is to demonstrate the relationship of physical properties between mass and energy: Einstein's famous equation of E=mc2 summarizes this equivalence between mass and energy, which means that mass and energy can be converted into each other [2].
However, it is argued that high dimensional spacetime and high dimensional space are different definitions. For example, in the definition of high-dimensional spacetime, the fourth dimension is time dimension, but it is a pseudo dimension, meaning that its units are different from the other three dimensions. In comparison, the fourth dimension of high-dimensional space still has the same nature as the dimension of three-dimensional space, and time is still a pseudo dimension. Therefore, spacetime and space cannot be confused [3].
As argued by my another article [14], the fourth dimension axis of time-spaces is not time, but is defined by topology with time scale, so the fourth dimension of space possesses the same nature as the three dimensions of spaces.   
Topology is a inter-discipline originated from the disciplines of geometry and Set theory, which studies the concepts of space, dimension and transformation, on the basis of the theory that some properties of geometry or space that can remain unchanged after continuous shape changes, so it only emphasizes on the positional relationship between continuously changing objects, ignoring the properties of shape and size [17].
Consequently, in the topology definition of my article, the properties of geometry or space, which can remain unchanged after continuous shape changes between three-dimension spaces and the fourth dimension spaces, include magnetism, electric field, and dark matter (part of mass). Mass can be divided into elementary particles and dark matters. The properties of elementary particles in three dimensional spaces will be changed when the space continuously turns to the fourth dimensional space, but dark matter remains constant in topology definition.   
String Theory
String theory is a branch of theoretical physics that attempts to solve some problems of incompatibility between quantum mechanics and relativity, with the basis that the basic units of universal nature are not elementary particles of point form such as electrons, photons, neutrino and quarks, but are the very small linear ‘strings’, including both ‘open strings’ with endpoints and ‘closed strings’ with loops [4].
String theory and its updated version of ‘Super-string Theory’ believe that all subatomic particles are not small dots, but are strings similar to Rubber band so the only difference between the particle types is the frequency variation in the string vibration. The objective of String theory mainly attempts to solve the seemingly incompatible two main physical theories, quantum mechanics and General relativity, intending to create a ‘theory of everything’ that describes the entire universe. However, this theory is very difficult to test, and some adjustments have to be made on the universe we describe, which is that the universe must have more space-time dimensions than the Four-dimensional space proposed by relativity. Scientists believe that these hidden dimensions may have curled up to be so small that we have not detected them [4].
The further discussion of String theory does not only describes ‘string’ objects, but also includes point and film objects, higher dimensional space, and even Parallel universe. It is worth noting that String theory has not yet been able to make accurate predictions that can be verified experimentally [4].
My article must critique the theoretical physics here: the theoretical physics only creates complicated mathematical formulas that are incapable of being verified by experimental or observation data. This is just like mathematical game --- neither like physics as natural science nor like applied mathematics which attempts to solve the social issues.  
Parallel universes
Parallel universe refer to other universes that are similar to but different from the original universe, existing parallelly to each other. In the multiverse definition, it is a theoretical physics combining all possible infinite or finite universes, including all existing and possible physical properties:space, time, matter, energy, as well as Physical law and Physical constant describing them.Then multiverse is consisted of each universe that is called Parallel universe [5].
In the 1950s, some physicists discovered that the quantum states observed each time were different. Since all matter in the universe are composed of quanta, these scientists have speculated that each quantum possesses a different state, the universe may also be composed of multiple similar universes rather than just one. The concept of parallel universes is proposed according to the scientific discoveries in modern quantum mechanics other than just theoretical physics [5].
My another article has proposed two symmetric three-dimensional spaces along the fourth dimension axis, which is demonstrated and proven by robust physical data [18]. This article further proposes that there are only two symmetric three-dimensional spaces along the fourth dimension which can be defined as parallel universes, rather than infinite parallel universes. The two symmetric three-dimensional spaces show symmetric nature in magnetism and electric field, but the mass between the two three-dimensional spaces are significantly different. One possesses more mass and the other is smaller. The heavy one tends to be Yang pole that is dominant status and the light one tends to be Yin pole that is subordinate status. In our three-dimensional spaces, the majority of cases are like that lighter celestial body is rotated around heavier ones and is following the motion orbit of heavier ones, which is subordinate and dominant status respectively.  

Symmetric Universe
The universe of positive and negative symmetry is defined as two universes composed of substances with opposite physical properties and different charged components. The three-dimensional space where we live is called the positive universe (positive space), and the correspondingly opposite of our space is the so-called anti universe (anti space) [9]. However, the past theories underlying this symmetric universe is mainly based on the time-space relativity, whose details are not reviewed in my article again, but the original theories with regards to the symmetric universe are discussed in my another article [18].
Law of Universal Gravitation
The Newton's law of universal gravitation is the law of gravity that quantifies the interaction between objects on the basis of empirical data, revealing that any two mass particles attract each other through the gravitation force in the direction along the connecting center line. The magnitude of this gravitational force is directly proportional to the product of the mass between the two objects, but inversely proportional to the square of their distance, which is independent of the chemical essence or physical state between the two objects [8].
file:///C:/Users/ADMINI~1/AppData/Local/Temp/ksohtml8996/wps1.png = ma = mv2/r = mrw2
Where G is the gravitation constant, M1 and M2 is the mass of two objects, r is the vector distance between two objects, a is acceleration speed, v is the tangential speed, w is the angular velocity, respectively. This empirical model of Newton's Law is broadly applicable on the physical cases under low speed, macro and weak gravity conditions, but not valid again when conditions turn to be high speed, micro and strong gravity [8]. In another words, this theory derived from macro empirical data is no longer applicable on the physical calculation at quantum level.
Dark Matter
Dark matter is a kind of invisible substance that is theoretically proposed to exist in the universe, which is extrapolated indirectly by astronomy observation. It is deduced that dark matter becomes the main component of cosmic matter, but it is not classified into any known substance that constitutes visible celestial bodies [6].
Modern astronomy argues that dark matter would exist in a large number of galaxies, star clusters and the universe, with its mass significantly greater than the total mass of all visible celestial bodies in the universe, which is demonstrated through the observation results of the movement of celestial bodies. This conclusion is deduced indirectly by comparing and contrasting with the natural Laws that is drawn from the empirical results in the earth, including Newton's phenomenon of universal gravitation, the Gravitational lens effect, the formation of the Large-scale structure of the Universe of the universe, and microwave Background radiation. In combination with the observation of Microwave Background Radiation Anisotropy in the universe and the Standard Cosmology model (Λ-CDM model), it can be estimated that dark matter in the universe accounts for 85% of the total mass of all matter and 26.8% of the total mass and energy of the universe respectively, which is composed of Weak Interaction Massive Particles (WIMP). This argument and indirect extrapolation is broadly acceptable by the scientist community, with its mass and interaction intensity nearly at the weak electrical scale, and the observed residual abundance is obtained through the thermal decoupling process during the expansion of the universe [6].
The earliest stage of proposing dark matter: in 1922 astronomer Jacobus Kapteyn proposed that invisible matter could be indirectly inferred from the motion of star systems around stars. In 1933, another astrophysicist, Fritz Zwicky, used spectral redshift to measure the velocities of galaxies in the Coma Cluster relative to the Galaxy cluster. Using the Virial theorem to compare and contrast, it was found that the velocity dispersion of galaxies in the Galaxy cluster was too high so that the gravity generated only by the mass of visible galaxies in the Galaxy cluster could not bind them in the Galaxy cluster, which was consequently deduced that there should be a lot of invisible dark matter in the Galaxy cluster, whose mass was at least 100 times that of visible galaxies. Later S. Smith's observation of the Virgo Cluster in 1936 also supported this conclusion of dark matter existence [6].
There are several evidences and study methods supporting the existence of dark matter: firstly, the most notable evidence is the astronomy observation calculating galaxy rotation curve and dispersion velocity distribution. Galaxy rotation curve calculates the relationship between the rotation velocity of visible objects in spiral galaxies and their distance to the center of the galaxy. Combined with the Virial theorem, the material distribution in the galaxy can be calculated from the dispersion velocity distribution of visible objects in the galaxy. According to the observation of the distribution in the mass of the visible objects in the spiral galaxy and the calculation of the Newton's law of universal gravitation, the movement speed of the outer objects around the center of the galaxy should be slower than that of the central objects. However, measurements on the rotation curves of a large number of spiral galaxies indicate that the speed of outer celestial bodies is almost the same as that of inner celestial bodies, which is significantly higher than it expected. This inconsistence between the astronomy measurement and Newton's law of universal gravitation implies the presence of massive invisible matter in these galaxies; Secondly, there are three methods to deduce dark matter, including the motion of galaxies in the Galaxy cluster observed and calculated by gravity theory, observing the X-ray produced by the Galaxy cluster, Gravitational lens effect. These three methods are conducted independently with each other which consequently support each other in robust means, comprehensively leading Galaxy cluster observation to be an important mean of studying dark matter; Other dark matter research methods include cosmic microwave background radiation and the formation of the Large-scale structure of the Universe [6].
As deduced above, dark matter would accounts for 85% of the total mass of all matter and 26.8% of the total mass and energy of the universe respectively, so it must exist everywhere in our planet as well. The original theory discussing the nature of dark matter and the methods to measure the dark matter characters have been proposed by my another article [10], which is summarized in Table 1 for comparison. Particularly, my article has argued that the phenomenon of anti universal gravity law illustrated above is caused by the uneven distribution of dark matter in the magnetic field intensity between celestial bodies. For example, the Coma Cluster observed by Fritz Zwicky is constructed by the dark matter with stronger magnetic field intensity, in comparison to the galaxy in which the calculation equations of both galaxy rotation curve and dispersion velocity distribution are drawn according to the empirical data.

Antimatter is the anti state of normal matter observed in our three-dimension spaces, which will annihilate normal matter to offset each other, exploding and generating huge energy [7].
The common micro-particles of antimatter detected in experiment include positrons and negative protons. Compared with the normal state of electrons and protons, antimatter micro-particles have the same quantity of electric charges but opposite electrical properties. It is argued that there may be spaces completely composed of antiparticle in the universe, which is named as antimatter spaces where the atom is consisted of negative protons and positrons. In general, normal state elementary particle and anti state elementary particle do not only have opposite charges, but also have opposite properties [7].
The experiment detection of anti-particles in quantum physics: the elementary particle state of both protons and neutrons are collectively referred to as nucleons, which can be converted into each other. It is found that in the study of nuclear phenomena, the elementary particles of proton state can be converted into neutron state, and inversely the elementary particles of neutron can also be converted into proton state, but the total quantity of nucleons in the atomic nuclear system stay as unchanged quantity before and after the conversion. For example, when β decay occurs, the emission of positrons is called 'positron' β Decay, whereas it is called ‘negative β Decay’ if it releases negative electrons. In the positive direction of β decay process, a proton in the nucleus is turned into a neutron, coupled with releasing a positron and a neutrino at the same time, while during negative β decay process, a neutron in the nucleus is turned into a proton, and a negative electron and an antineutrino are emitted concurrently. In addition, electron capture is also one kind of β decay called Electron Capture β Decay in quantum physics [7].
Consequently, it is to better understand that antimatter is the mirror state of normal matter. Normal atoms contain positively charged nuclei, while negatively charged electrons are outside the nuclei. For its inverse state interpreted fundamentally, the composition of antimatter have positively charged electrons and negatively charged nuclei. Einstein predicted the existence of antimatter according to the theory of relativity: ‘For a matter with mass m and charge e, there must be a matter with mass m and charge e (i.e. Antimatter)’. According to physicists' hypothesis, at the beginning of forming stages of the universe, there was equal amount between normal matter and antimatter. Once they are approaching each other, they would annihilate each other and cancel each other, exploding and generating huge energy [7].
My another article has proposed the anti-matter of symmetric three-dimensional spaces along the fourth dimension axis, provided robust evidences supporting this arguments. Here it is further to argue that the experiment detected anti-particles are the unstable state of elementary particles, which are caused by the external electric field (such as the synchrotron phase in the particle collision experiment) or by the decay of dark matter binding these elementary particles (such as β Decay process). Both reasons result in the inverse direction of spinning motions of elementary particles, becoming the properties of anti-particles.  However, as discussed in my another article [13], these magnetic elementary particles’ cutting motion along the magnetic line on the fourth dimensional axis is the mechanism of generating electric charges, so the spinning motions of elementary particles mentioned above is relative to the magnetic line on the fourth dimensional axis, rather than the rotation motion around the rotation center point of an atom in the three dimensional spaces, but the two kinds of motion orbits must influence each other. With regards to the reasons why there are both positive and negative types of β Decay? this article proposes that the type of β Decay process is mainly determined by the rotation orientations of free electrons around the rotation center point of an atom in the three dimensional spaces. In the electron clouds, if the free electron with rotation motion of clockwise orientation is emitted from the unstable atom, which is defined as the negative pole relatively to the nuclear of an atom, the nucleus would tend to be positive β decay process; if the free electron with rotation motion of anticlockwise orientation is emitted from the unstable atom, which is defined the positive pole relatively to the nuclear of an atom, the nucleus would tend to be negative β decay process. Consequently, the electrons can be both positive and negative poles relatively to the nucleus of an atom, rather than single pole to the nucleus. The findings of both positive and negative β decay process would further support the 3D modeling of electron clouds designed in my another article [19], which classifies the electron orbits into Yin and Yang poles in the electron clouds according to the clockwise and anticlockwise spinning orientations respectively. Of course, the clockwise and anticlockwise can be also defined as Yang and Yin poles respectively in this 3D modeling when the observation angle is turned to be opposite.  

Gravitational wave
Gravitational wave is firstly predicted by Einstein in General relativity, revealing the disturbance to the space-time of the universe caused by the acceleration of objects. Basically, the mechanism of gravitational is similar but not identical to the water waves generated by the movement of objects on the water surface. Usually, only very large objects can emit gravitational wave that are easy to detect, such as supernovae explosion or two black holes colliding, which is very rarely observed [16].
Gravitational wave is called as the sound of ‘crying’ at the birth of the universe, which has been spreading in all directions since the birth of the universe with tiny residue energy that is detectable, so it is also called ‘Random Gravitational Wave Background’. In the ‘Laser Interference Gravitational wave Observatory’, scientists are trying to find a disturbance event brought by the ‘Random Gravitational Wave Background’ in the laser light up to 4 kilometers long, whose probability of occurrence is smaller than an atomic nucleus [16].
It is great to see that scientists have constructed several facilities at large scale globally for detecting gravitational wave. In the European Gravitational Wave Detection plan, scientists have built land-based Gravitational wave antennas at GEO600 Gravitational wave observatory in Hanover, Germany, and constructed Gravitational-wave observatory in Virgo, Italy, with the interferometer arm of 600 meters long in GEO600 Gravitational Wave Observatory in Hanover, Germany and an arm length of 3000 meters in the Virgo Gravitational-Wave Observatory located in Italy respectively.The detector is likely to encounter the ‘short pulse’ of Gravitational wave, which is caused by two stars or two black holes circling each other [16].
However, although it have been claimed that Gravitational wave are occasionally detected in the laboratory at transient time, it has not been recognized to reach the consensus. Consequently, astronomers try to indirectly verify the existence of Gravitational wave by observing the changes of orbital parameters of binary stars. For example, the revolution of binary star system, the rotation of neutron star, supernova explosion, and the formation, collision and capture of black holes predicted by theory can radiate strong gravitational waves [16].
This article tries to propose the original theories with regards to the gravitational wave. As described above, the gravitational wave is occasionally detected by the Laser Interference, which may encounter the ‘short pulse’ of Gravitational wave, so the gravitational wave must be a kind of longitudinal pulse wave rather than transverse wave. In my previous paper, I have discussed that under the effect of dark matter adhesion force on the fourth dimension axis, positively charged protons and their paired electrons do spring-like longitudinal wave motion on the fourth dimension axis to generate pulse waves. This kind of pulse wave is the origin of radiation such as α Rays, β Rays, γ Rays [15]. The generation of gravitational waves [16] is the space-time bending phenomenon detected under the condition that the mass density and weight of celestial bodies increases significantly. This paper further proposes that the elementary particle motion model in the celestial body of this scenario is similar to that of the ray: the spring-type longitudinal wave motion is performed on the fourth dimension axis, and the pulse wave is generated. However, due to the high mass density of the celestial body that generates the gravitational wave and the aging effect of dark matter, the gravitational wave is low-frequency and long wave length, compared with the ray. For example, the frequency range of gravitational wave is defined from 10-18 Hz to 1014 Hz [20], which is significantly lower than the ray frequencies.  
Further more, according to the generation mechanism of gravitational wave discussed above, the detection of gravitational wave can be used to estimate the aging stages of star celestial body, so the construction of facilities at large scale globally for detecting gravitational wave is still valuable and meaningful to help to better predict and understand the development of our universe.

Star Formation
A star is a giant sphere composed of glowing plasma mainly with elements of hydrogen, helium, and additionally with trace amounts of heavier elements. The brightness of a star is measured by magnitude in astronomy, with the relationship that the higher brightness is defined as the lower magnitude in this measurement scale. Nuclear fusion is carried out in the core of star to generate energy, transmitting it outward and radiating from the surface to outer space. Once the Nuclear reaction of the core is exhausted, the life of the star will end soon. At the end of life stage, stars mainly contain degenerate matter, which is a substance with extremely high density including: White dwarf, Neutron star, Strange matter, Metallic hydrogen and Black hole, etc [21].
The classification of stars that is widely recognized is based on spectral classification. According to the spectral characteristics, including spectral lines and bands in Spectral class, the relative intensity among these spectral lines and bands, as well as the energy distribution of continuous spectrum, stars are divided into the ten major types [21]:
Table 2. Star classification based on spectral characteristics [21].
Star Type
Spectral Characteristics
Surface Temperature
Life Time
Light blue
Strong and continuous UV spectral bands are detected. There are ionized helium, neutral helium, and hydrogen lines. The secondary ionized carbon, nitrogen, and oxygen lines are weak.
30,000 - 60,000 K
About a few million years or less
Orion ι
Blue and white color
The hydrogen line is strong with obvious neutral helium line, and there are no ionized helium lines, but there are spectral lines indicating ionized carbon, nitrogen, oxygen, and secondary ionized silicon.
10,000 - 30,000 K
About tens of millions of years
Orion β
The hydrogen line is extremely strong, with spectral lines of ionized magnesium and ionized calcium, but the helium line disappears.
7,500 - 10,000 K
About several hundred million years
Lyra α
Golden and While
The hydrogen line is strong, but weaker than the A-type. The ionized calcium line is greatly enhanced and widened, resulting in the appearance of many metal lines.
6,000 - 7,500 K
About billions of years
Ship base α
The hydrogen line weakens but the metal line strengthens with very strong and wide ionized calcium line.
5,000 - 6,000 K
About 10 billion years
The hydrogen line is weak, but the metal line is much stronger than the G-type lines.
3,500 - 5,000 K
About 15 billion to 35 billion years
Boötes α
The titanium oxide molecular band is the most prominent, and the metal line is still strong, but the hydrogen line is very weak.
2,000 - 3,500 K
Over billions of years
Orion α
R and N
From orange to red
The spectra are similar to those of K and M types, but are added with strong molecular bands of carbon and oxygen, which are consequently classified into carbon stars, denoted as C.
Pisces 19
The spectra are similar to the M-type, but are added with strong zirconia molecular bands, often emitting hydrogen radiation.
Gemini R

My another article firstly proposes that creatures would be hatched in stars, whose metabolites become the sources of new mass in our universe (myth stories?) [14]. Here my article further argues that the spectral lines indicating different chemistry elements at different life stages of star would represent the bio-signals of creatures hatched in the stars. At the ‘larva’ stage of creature, the creatures are hatched by highest temperature. At this stage (Stage O), the star spectral lines of ionized helium, neutral helium, and hydrogen indicate the nuclear fusion in the star reactor, while the spectral lines of weak secondary ionized carbon, nitrogen, and oxygen indicate the organic elements at larva stage of creatures. With the growth of this creature, the spectral lines (Stage B and A) of organic elements become stronger and the temperature required to hatch the creatures decreases. When they turns to be mature, the organic elements of soft organs turn to be hard organs, so metal elements become one of the main components (Stage F, G, K). At the advanced stage, the hard organs of creatures contain heavier metal elements than the mature stage (Stage M) and the advanced creatures yield their offspring creatures, so strong molecular bands of carbon and oxygen indicating larva stage of creatures are added again at R and N star stages.   
Next it is to selectively review the theories with regards to physical properties of star, which can be understandable and validated by empirical data:
The relationship between the mass and lifespan of star usually is defined as: the larger the mass of a star, the shorter its lifespan, mainly because the pressure in the core of the star with heavier mass is correspondingly enhanced, resulting in faster burning rate of hydrogen. Consequently, many super massive stars have an average lifespan of only one million years, but the lightest stars (such as red dwarf) burn their fuel at a very slow rate relatively, and their lifespan can correspondingly last for tens to trillions of years [21].
The magnetic field of a star originates from the region where the convection cycle of gas substances occurs within the star, similar to a conductive plasma generator causing the magnetic field to extend in stars. The intensity of the magnetic field changes with the mass and composition of the star, and the total amount of surface magnetic activity is depended on the speed of Stellar rotation, which can produce star spots where the surface magnetic field is stronger than normal and the temperature is lower than normal [21].
Due to the activity of magnetic fields, young and high-speed rotating stars tend to perform as high surface activity, which also enhances stellar winds, but the rate of rotation gradually slows down as the star ages. Therefore, stars as old as the sun rotate at a lower rate, and their surface activities are correspondingly mild without strong stellar winds. Stars with slow rotation tend to exhibit periodic changes in surface activity and may temporarily cease activity during the cycle [21].
My article here further discusses the increasing incidence of Solar flare caused by the aging of the sun. With the aging of solar nuclear reactor, the magnetic field tends to be uneven distribution occasionally (such as leakage of inner pressure) so that the convection between different gas substance layers in the sun is disturbed; secondly, the slowing down of solar rotation speed also leads to solar winds on the surfaces, both of which become the reasons to increase the solar flare events.  
With the aging of star with lower mass (such as the sun), stars expand at the first senescence stage, when the star is called ‘Red Giant’ that collapses and becomes a ‘White dwarf.’ White dwarf further radiates and loses energy, then turning into a ‘Black dwarf,’ and finally disappears [21].
With the senescence of massive star at a density of not less than 7 times of solar density, stars become a ‘Red supergiant,’ which ends its life in the form of a supernova explosion and eventually becomes a Neutron star or a Black hole. The Neutron star eventually loses energy, forming a ‘Black dwarf,’ while black hole emits particles outward, perhaps turning into white holes or completely evaporating [21].
It is to summarize that the senescence forms of stars discussed above, mainly including ‘Red Giant,’ ‘White dwarf,’ ‘Black dwarf,’ ‘Red supergiant,’ ‘Supernova,’ ‘Neutron star’ and ‘Black hole,’ are not only the forms of degenerate matter, but also the sources detecting the gravitational wave. Consequently, it is to further review the relevant theories interpreting each senescence forms of stars below.   
Senescence forms of stars
Red giant is a kind of unstable stage experienced by stars in the aging process of burning. According to the Stellar mass, Red giant form can last only for millions of years, whose surface temperature is relatively low with red colour, lifted brightness and huge volume, consequently named as ‘Red Giant.’ The stars are burning by thermonuclear fusion inside them, resulting in nuclear fusion into one helium nucleus from every four hydrogen nuclei, coupled with a large amount of atomic energy and radiation pressure released. Nuclear fusion mainly takes place in its center (core) of star, achieving balance between radiation pressure and its own shrinking gravity.
Under this balance situation, the burning of hydrogen in the star is extremely fast, and the center forms a helium core and keeps increasing. As time goes on, the hydrogen around the helium nucleus decreases, and the energy generated by the central nucleus is no longer sufficient to maintain its radiation, resulting in the disrupted balance with the expression as the contraction of the helium core and the expansion of the hydrogen shell. The Stellar nucleosynthesis of helium core inside the combustion shell shrinks inward and becomes hot, while hydrogen burning in the stellar shell expands outward and keeps cooling, greatly reducing the surface temperature and becoming a Red giant in rapid expansion. The final result of helium core fusion is to form a White dwarf in the center [22].
White dwarf that is also known as degenerate dwarf is a star with low luminosity, high density and high temperature, named as ‘White Dwarf’ due to its white color and small size. White dwarf is the final stage of a star evolution, which is mainly composed of carbon covered by hydrogen and helium. White dwarf gradually cools and darkens over hundreds of millions of years, turning to be small in size, low in brightness, but high in density and mass. When the outer region of the red giant star expands rapidly, the helium core shrinks strongly inwards due to the reaction force, and the compressed material continues to heat up. The final core temperature will exceed 100 million degrees, so the helium begins to condense into carbon. When the unstable aging state of the star reaches the critical limit, Red giant will explode, throwing the matter outside the core away from the star body, which diffuses outward into a nebula, so that the helium core is left to become the White dwarf that can be seen. As the result of remaining core substances, White dwarf is usually composed of carbon and oxygen. There is no nuclear fusion reaction inside White dwarf, so the star no longer generates energy, which means that the temperature of White dwarf formation is very high at the first stage, but there is no energy source. Therefore, it will gradually release its heat and gradually cool down, with the colour finally turning from white into red. The balance of electron degenerate pressure to the strong gravitational forces of White dwarf maintains its stability of star. However, when the mass of White dwarf further increases, the electron degenerate pressure may not resist its own gravitational contraction, so White dwarf will collapse into more dense forms: Neutron star or Black hole. Another viewpoint is that after a long time, the temperature of White dwarf will cool down to the point where the luminosity can no longer be seen, becoming a cold Black dwarf. However, this viewpoint only stays in theory [23].
Red supergiant is a massive star on the verge of death, with low temperature and huge radius varying from hundreds to thousands of times of that in the sun. Red supergiant is one of the Supergiant stars, whose volume is one of the largest stars in the universe. After the outer layer expands, the cohesive force which it receives decreases. Even if the temperature decreases, its expansion pressure can still resist or exceed the gravitational force. At this point, the increase in the radius and surface area of the star exceeds the increase in radiation energy production rate. Therefore, although the total luminosity may increase, the surface temperature will decrease. When a big star with the mass higher than 4 times of the Solar mass re-initiates hydrogen fusion outside the helium core, the energy released outside the core does not increase significantly, but the radius increases many times, so the surface temperature drops from tens of thousands of K to 3000~4000 K, becoming a Red supergiant. When small and medium-sized stars with the mass less than 4 times of the Solar mass enter the Red giant stage, their surface temperature drops, but their luminosity increases sharply, because their outer expansion consumes less energy with more radiation energy production capacity [24].
Supernova is a kind of aging stage in the process of Stellar evolution, which is a violent explosion experienced by stars when they are approaching the end of their evolution, which is extremely bright. The sudden electromagnetic radiation in the explosion can often illuminate the whole galaxy where it is located, and may last for weeks to months before gradually decaying. During this period, the radiation energy released by the explosion can be equal to the total radiation energy of the sun in its lifetime. It is estimated that the probability of supernova explosion in a galaxy like the size of the Milky Way is about once per 50 years, and they play an important role in providing rich heavy elements for Interstellar medium. At the same time, the shock wave generated by the supernova explosion will also compress the nearby Interstellar cloud, which is an important initiating mechanism for the birth of new stars [25].
Neutron star is one of the few terminal forms that may become after supernova explosion via Gravitational collapse at the end of Stellar evolution, which is a kind of star between White dwarf and Black hole, formed by the collapse of stars whose mass is not enough to form Black holes at the end of their lives. Hydrogen, helium, carbon and other elements in the core of stars are exhausted in nuclear fusion reaction, and when these elements are finally transformed into iron, they cannot obtain energy from nuclear fusion again. The surface temperature of Neutron star is about 1.1 million degrees with χ Radiation, γ Radiation and visible light. The Neutron star forms a very strong magnetic field, which makes the Neutron star emit beams of radio waves along the direction of the magnetic pole. The rotation of Neutron star is very fast, which can reach hundreds of revolutions per second. If the magnetic poles of the Neutron star faces to the earth, then the radio wave beams from the Neutron star will sweep the earth again and again with the rotation like a rotating lighthouse, forming radio pulses, which is consequently called as ‘Pulsar’[26].
A supermassive Black hole is hidden in the center of most galaxies in the universe, including the Milky Way where we live. The mass of these Black holes varies from 990000 to 40 billion times of Solar mass. The existence of black holes is usually indirectly inferred by detecting the strong radiation and heat from Accretion disk around them. When matter falls under the gravity of a strong black hole, it will form an Accretion disk around it and spiral down. In this formation process, radiation energy will be released quickly, heating the matter to extremely high temperature, thus emitting off strong radiation. Black holes devour surrounding matter through accretion, which may be their way of growth [27]. The past theories explaining Black hole are based on the time-space relativity, which are not reviewed further in my article.  
Based on the relevant theories discussed above, next this article selects and reviews case studies in the astronomy research with specific emphasis on the gravitational wave and Black holes, which have been published in China as PhD theses [29][30][31][32][33]. Then future research gaps in the astronomy observation are discussed on the basis of new theories proposed by my article above.
................................................... (to fill in words by reviewing case studies)

Future research gaps in gravitational wave:
According the classification of sources of gravitational wave, the sources of gravitational wave include three types: continuous gravitational wave source (rotating Neutron star, stable binary star system), explosive gravitational wave source (supernova explosion, binary star merger), random Gravitational wave background (astrophysical Gravitational wave background, original Gravitational wave) [28]. Among these sources, the first type of sources (rotating Neutron star, stable binary star system) generate the gravitational wave at highest frequencies with continuous detecting events. According to the physical motion model of gravitational wave generation mechanism newly discussed in my article above, it is deduced that in most cases, the higher the frequencies of gravitational wave, the younger the star form; the stronger intensity of gravitational wave, the heavier mass of the star system (or the stronger gravity per unit mass) to compress the charged elementary particles. Consequently, the first type of sources would be the early stages of star senescence forms. The first objective of future research gap is to correlate the physical properties of the first type of sources (including Rotation period, Revolution cycle, Half length of track projection axis, Track eccentricity, Pulsar mass) with the physical parameters of gravitational waves detected from the corresponding sources, so that new models are capable of being established to extrapolate the development stages on the first type of sources according to the theories discussed above.   
For the detecting events with occasional occurrence, which only receive gravitational waves at transient time with lower frequencies, it is further to explain that this star form of the gravitational wave sources would be more aging than the first type of sources, and the occasional occurrence of detecting gravitational waves at transient time would be caused by the unstable resonance of gravity field when binary star merger occurs. When resonance of gravity field happens during binary star merger, the radiation energy of stars will be further released and the elementary particles between binary stars are synthesized into the final state of materials like Black hole one. More specifically, when binary star merger happens, the elementary particles between binary stars absorb radiation energy firstly, turning into excited state with higher energy level and more free form (although this excited free form has not reached the ionization state). Then the elementary particles of excited state with more free form are further synthesized into degenerate matter by the gravity contraction. In this degenerate matter synthesis process, the incident particles and atomic nuclei combine to form into metastable composite nucleus, which subsequently decays into the final stable particles in a period, further releasing radiation energy. This metastable composite nucleus as the combination of incident particles and nuclei is called the resonant state, and the final stable particles would be the final state of degenerate matter compressed by gravity. The knowledge and both excited state and resonant state have been discussed in detail in my another quantum physics paper [34]. Consequently, the second objective is to analyze the excited state of elementary particles between binary stars when resonance of gravitational waves occurs during binary star merger, deducing the energy released during this process.     

An original review essay is coming as the second study plan in this year (not less than 12 000 words in English)......
Firstly published on 29/01/2023. Secondly revised on 10AM 30/01/2023. Thirdly revised on 11PM 30/01/2023; Latest revised on 12/06/2023; 13/06/2023; 14/06/2023; 15/06/2023; 20/06/2023 a;b; 21/06/2023; 22/06/2023 a;b; 28/06/2023; 04/07/2023 a;b; 05/07/2023; 18/07/2023; 21/07/2023; 22/07/2023; 24/07/2023 a;b.

[1]. 高维空间。搜狗百科。
[2]. 相对论。搜狗百科。
[3]. 十一维空间。搜狗百科。
[4]. 弦论。搜狗百科。
[5]. 平行空间。搜狗百科。
[6]. 暗物质。搜狗百科。
[7]. 反物质。搜狗百科。
[8]. 万有引力。搜狗百科。
[9]. 对称宇宙。搜狗百科。
[10]. Liu Huan. (2021). Article 2. Van der Waals force and Dark Matter. Journal of Environment and Health Science (ISSN 2314-1628), 2021(02).
[11]. Liu Huan. (2022). Essay: Electromagnetics and Materials. Journal of Environment and Health Science (ISSN 2314-1628), 2022(11).
[12].  Liu Huan. (2021). The materials, relativity and its philosophy attributes. Journal of Environment and Health Science (ISSN 2314-1628), 2021(2).
[13]. Liu Huan. (2021). The magnetism across time-spaces and the driving force of celestial rotation. Journal of Environment and Health Science (ISSN 2314-1628), 2021(2).
[14]. Liu Huan. (2021). The materials, relativity and its philosophy attributes. Journal of Environment and Health Science (ISSN 2314-1628), 2021(2).
[15]. Liu Huan. (2021). Quantum Mechanics. Journal of Environment and Health Science (ISSN 2314-1628), 2021(02).
[18]. Liu Huan. (2021). The anti-matter of symmetric three-dimensional spaces along the fourth dimension axis. Journal of Environment and Health Science (ISSN 2314-1628), 2021(2).
[19]. Liu Huan. (2021). Ancient Chinese Eight Diagrams and Application on Chemistry Reaction Rate. Journal of Environment and Health Science (ISSN 2314-1628), 2021(02).
[20]. 袁修林,韦联福,郑昊等.随机高频引力波电磁响应符合探测的模拟[J].中国科学:物理学 力学 天文学,2022,52(12):65-74.
[29].谢浪. 毫秒磁星及其相关引力波辐射的研究[D].中国科学技术大学,2022.DOI:10.27517/d.cnki.gzkju.2022.001732.
[30].邵东生. 非转动中子星的最大引力质量[D].中国科学技术大学,2022.DOI:10.27517/d.cnki.gzkju.2022.001714.
[31].原浩瑜. 致密星并合产生电磁辐射的研究[D].广西大学,2022.DOI:10.27034/d.cnki.ggxiu.2022.002311.
[32].黄永嘉. 双中子星并合的数值模拟及并合后的引力波辐射[D].中国科学技术大学,2022.DOI:10.27517/d.cnki.gzkju.2022.001658.
[33]王湘婷. f(Q)引力中的致密星研究[D].上海师范大学,2023.DOI:10.27312/d.cnki.gshsu.2023.002171.
[34]. Liu Huan. (2021). Essay: Quantum and Materials. Journal of Environment and Health Science (ISSN 2314-1628), 2021(12).

欢迎光临 ( Powered by Discuz! X3.2