hliu092 发表于 2021-9-17 11:16:42

Pollution Meteorology/污染气象学

Personal exposure to carbon monoxide and particulate matter pollution in the urban transport microenvironment in Auckland and Christchurch

Liu, Huan
Link: https://researchspace.auckland.ac.nz/handle/2292/6044
Academic usage: Visit Statistics

Issue Date: 2009
Degree Grantor: The University of Auckland
Rights: Copyright: the author
Rights (URI): https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
Advisor: Jenny Salmond

Cited as: DOI: 10.58473/Book0001Retrieval from official database: www.crossref.org

Scilit Database Retrieval URL : https://www.scilit.net/publications/8c77b372806792ed72375e1179c31989

Web of Science Retrieval URL: https://publons.com/wos-op/publon/66151834/

ORCID: https://orcid.org/0000-0003-4881-8509

A field campaign was carried out over autumn in 2009 in both Christchurch and Auckland, aiming to assess personal exposure to carbon monoxide and particulate matter pollution in the transport microenvironment during peak traffic time in the morning and afternoon. The representativeness of fixed station monitoring (FSM) with the personal monitoring in the transport microenvironment was examined in both cities. This thesis characterized the determinants of personal exposure to air pollution in the transport microenvironment, in relation to traffic emissions and prevailing meteorology. Car commuters consistently experienced the highest mean exposure to carbon monoxide in both cities, whereas personal exposure to particulate matter pollution was usually highest during journeys by bus in both sites. Cycling mode resulted in relatively lower mean exposures to both CO and particulate pollution as compared to motor vehicles. Notably, train became the ideal mode of transport in Auckland due to the least mean exposure to CO for train commuters. Mean exposure to carbon monoxide was reasonably correlated with mean exposures to PM1.0 or ultrafine particle counts during journeys by bike in both cities. The average exposures to PM10 showed a strong correlation with PM2.5 exposures during all the journeys in both cities, but displayed weaker or little correlation with the exposures to PM1.0 or ultrafine particle counts. The average background CO exposure during bike journeys showed similar levels to ‘Queen St’ station monitoring located at street kerbside in Auckland, but was generally higher than most urban background FSMs (e.g. ‘Takapuna’ station) in Auckland. In comparison, the average background exposures to PM10 or PM2.5 in the transport microenvironment were similar to most urban background FSMs (e.g. ‘Takapuna’ station) in Auckland. Notably, ‘Takapuna’ station monitoring was well correlated with the personal monitoring to both CO and PM10 pollution on bike mode in Auckland, and thus was used to predict both background and mean exposures to CO and PM10 during bike journeys in Auckland. The dominant causal factors associated with the peaks in exposure concentrations during commutes have been identified. These included neighboring diesel vehicle, traffic congestion, and traveling in street canyon and intersections. Each 1 m s-1 increase in wind speed resulted in decreases of mean CO exposure by 0.67 ppm for bike mode and 0.56 ppm for bus mode in Auckland. Temperature was also inversely correlated with CO exposure concentrations in Auckland. Relative humidity tended to ii increase the exposure concentrations of PM10 and PM2.5 in both cities. These findings improved our understanding of links between personal exposure to air pollution and health risks in the transport microenvironment, providing guidance for transport policy making and urban design.
Key words: Personal exposure, Carbon monoxide, Particulate matter, Transport microenvironment, Personal monitoring.
This thesis is formally published as book (academic monograph) : 2014. Yi Yang Publishing Company Limited. ISBN 978-988-12551-9-8.In English words of 36 000.

论文题目:基督城和奥克兰市的人群在交通微观环境中所面临的大气污染暴露浓度值的监测与评价及其污染气象学理论探讨    为了评价人群在早上和下午交通高峰时间暴露在交通环境中的大气污染浓度值,此课题小组于 2009 年秋季分别在基督城和奥克兰市对一氧化碳和可吸入颗粒物的大气污染浓度进行了监测。此课题不仅使用了固定监测设备对环境空气污染的背景值进行评价,还同步使用了便携式监测仪器在微观交通环境进行了监测。这项研究针对人群在交通环境中的空气污染暴露值的影响因素进行了探讨,主要体现为交通污染排放和气象条件两个方面。研究表明,与其他交通工具相比,小汽车乘客所面临的一氧化碳空气污染暴露值是最高的,然而公共汽车乘客却面临着可吸入颗粒物污染因子的最高暴露值。与之相比,在自行车人群中两种空气污染因子的暴露值都比较少。值得注意的是,选择火车作为交通工具的乘客面临了最小的空气污染暴露值。在自行车人群中,一氧化碳平均值与 PM1.0 和 UPCs 浓度值具有正相关性。PM10 监测值与 PM2.5 浓度值表现了很高的正相关性,但是与 PM1.0 和 UPCs 浓度值弱相关或没有相关性。与‘皇后街’的固定监测站的监测值相比,自行车人群的 CO 污染背景浓度值与之相当,但是总体上高过奥克兰市的大多数固定监测站的监测值。特别注意的是‘塔卡普纳’监测站的一氧化碳和可吸入颗粒物污染监测值与自行车人群的暴露值显示出了很强的正相关,因此被用来预测自行车人群中的大气污染暴露值。在上下班途中导致了大气污染最大暴露值的主导因素已被确定,包括邻近的柴油车,交通拥堵,和地理位置的因素(比如街道峡谷和交叉路口等)。风速每增加 1m/s 导致了 CO 暴露值在自行车人群和公交车人群中分别减少了 0.67ppm 和 0.56ppm。在奥克兰市大气温度与大气污染暴露浓度呈负相关,相对湿度的增加导致了 PM10 和PM2.5 的暴露浓度在这两个城市同时增加。这些结果提高了我们对交通环境中空气污染暴露浓度和人群健康之间的理解,并引导了将来交通政策的制定和为城市规划设计提供了理论依据。

硕士论文已经以学术专著正式出版: 2014. Yi Yang Publishing Company Limited. ISBN 978-988-12551-9-8. 英文字数 36 000.
References:1. Abi Esber, L., M. El-Fadel, et al. (2007). "The effect of different ventilation modes on in-vehicle carbon monoxide exposure." Atmospheric Environment 41(17): 3644-3657.
2. Adams, H. S., L. C. Kenny, et al. (2001). "Design and validation of a high-flow personal sampler for pm2.5." Journal of Exposure Analysis and Environmental Epidemiology 11(1): 5-11.

3. Adams, H. S., M. J. Nieuwenhuijsen, et al. (2001). "Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK." Atmospheric Environment 35(27): 4557-4566.

4. Adams, H. S., M. J. Nieuwenhuijsen, et al. (2001). "Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK." Science of the Total Environment 279(1-3): 29-44.

5. Akbar, S. and M. R. Ashmore (1996). "Particulate air pollution and respiratory morbidity: Personal exposure in Delhi and its implications." Paper presented at the World Congress on Air Pollution in Developing Countries.

6. Alm, S., M. J. Jantunen, et al. (1999). "Urban commuter exposure to particle matter and carbon monoxide inside an automobile." Journal of Exposure Analysis and Environmental Epidemiology 9(3): 237-244.

7. Alm, S., K. Mukala, et al. (2000). "Personal carbon monoxide exposures of preschool children in Helsinki, Finland: levels and determinants." Atmospheric Environment 34(2): 277-285.

8. Arnold, S. J., H. Apsimon, et al. (2004). "Introduction to the DAPPLE Air Pollution Project." Science of the Total Environment 332(1-3): 139-153.

9. Ayers, G. P., M. D. Keywood, et al. (1999). "TEOM vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations." Atmospheric Environment 33(22): 3717-3721.
10. Battarbee, J. L., N. L. Rose, et al. (1997). "A continuous, high resolution record of urban airborne particulates suitable for retrospective microscopical analysis." Atmospheric Environment 31(2): 171-181.

11. Berghmans, P., N. Bleux, et al. (2009). "Exposure assessment of a cyclist to PM10 and ultrafine particles." Science of the Total Environment 407(4): 1286-1298.
12. Berkowicz, R., F. Palmgren, et al. (1996). "Using measurements of air pollution in streets for evaluation of urban air quality - Meterological analysis and model calculations." Science of the Total Environment 189-190: 259-265.

13. Bevan, M. A. J., C. J. Proctor, et al. (1991). "Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle." Environmental Science and Technology 25(4): 788-791.

14. Beyrich, F. (1997). "Mixing height estimation from sodar data - a critical discussion." Atmospheric Environment 31(23):3941-3953.

15. Briggs, D. J., K. de Hoogh, et al. (2008). "Effects of travel mode on exposures to particulate air pollution." Environment International 34(1): 12-22. 123.
16. Burnett, R. T., S. Cakmak, et al. (1998). "The association between ambient carbon monoxide levels and daily mortality in Toronto, Canada." Journal of the Air and Waste Management Association 48(8): 689-700.

17. Chaloulakou, A. and I. Mavroidis (2002). "Comparison of indoor and outdoor concentrations of CO at a public school. Evaluation of an indoor air quality model." Atmospheric Environment . 36(11): 1769-1781.
18. Chalupa, D. C., P. E. Morrow, et al. (2004). "Ultrafine particle deposition in subjects with asthma." Environ Health Perspect 112: 879–882.

19. Chan, A. T. (2003). "Commuter exposure and indoor-outdoor relationships of carbon oxides in buses in Hong Kong."Atmospheric Environment 37(27): 3809-3815.

20. Chan, A. T. and M. W. Chung (2003). "Indoor-outdoor air quality relationships in vehicle: Effect of driving environment and ventilation modes." Atmospheric Environment 37(27): 3795-3808.

21. Chan, L. Y., C. Y. Chan, et al. (1999). "The effect of commuting microenvironment on commuter exposures to vehicular emission in Hong Kong." Atmospheric Environment 33(11): 1777-1787.

22. Chan, L. Y., W. L. Lau, et al. (2002). "Commuter exposure to particulate matter in public transportation modes in Hong Kong." Atmospheric Environment 36(21): 3363-3373.

23. Chan, L. Y., W. L. Lau, et al. (2002). "Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China." Atmospheric Environment 36(38): 5831-5840.

24. Chan, L. Y. and Y. M. Liu (2001). "Carbon monoxide levels in popular passenger commuting modes traversing major commuting routes in Hong Kong." Atmospheric Environment 35(15): 2637-2646.

25. Clifford, M. J., R. Clarke, et al. (1997). "Drivers' exposure to carbon monoxide in Nottingham, U.K." Atmospheric Environment 31(7): 1003-1009.

26. Cohen, J. (1988). Statistical Power for the behavioral sciences. Hillsdale, NJ: Erlbaum.
27. Colvile, R. N., S. Kaur, et al. (2004). "Sustainable development of urban transport systems and human exposure to air pollution." Science of the Total Environment 334-335: 481-487.

28. Cortese AD, Spengler JD.Ability of fixed monitoring stations to represent personal carbon monoxide exposure. J Air Pollut Control Assoc 1976; 26 (12):1144 –1150.
29. Cyrys, J., M. Stolzel, et al. (2003). "Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany." Science of the Total Environment 305(1-3): 143-156.

30. De Bruin, Y. B., P. Carrer, et al. (2004). "Personal carbon monoxide exposure levels: Contribution of local sources to exposures and microenvironment concentrations in Milan." Journal of Exposure Analysis and Environmental Epidemiology 14(4): 312-322. 124

31. Deacon, A. R., R. G. Derwent, et al. (1997). "Analysis and interpretation of measurements of suspended particulate matter at urban background sites in the United Kingdom." Science of the Total Environment 203(1): 17-36.

32. Dennekamp, M., O. H. Mehenni, et al. (2002). "Exposure to ultrafine particles and PM in different micro-environments2.5." Annals of Occupational Hygiene 46(SUPPL. 1): 412-414.

33. Dickens, C., 2000. In-Car Particle Exposure. A report produced for DETR, vol. AEAT/EEQA-0125, issue 2. AEA Technology.
34. Di Marco, G. S., S. Kephalopoulos, et al. (2005). "Personal carbon monoxide exposure in Helsinki, Finland."Atmospheric Environment 39(15 SPEC. ISS.): 2697-2707.

35. Donaldson, K., D. Brown, et al. (2002). "The pulmonary toxicology of ultrafine particles." Journal of Aerosol Medicine: Deposition, Clearance, and Effects in the Lung 15(2): 213-220.

36. Donaldson, K., X. Y. Li, et al. (1998). "Ultrafine (nanometre) particle mediated lung injury." Journal of Aerosol Science 29(5-6): 553-560.

37. Dor, F., Y. Le Moullec, et al. (1995). "Exposure of city residents to carbon monoxide and monocyclic aromatic hydrocarbons during commuting trips in the Paris metropolitan area." Journal of the Air and Waste Management Association 45(2): 103-110.

38. Duci, A., A. Chaloulakou, et al. (2003). "Exposure to carbon monoxide in the Athens urban area during commuting."Science of the Total Environment 309(1-3): 47-58.

39. Duffy, B. L. and P. F. Nelson (1997). "Exposure to emissions of 1,3-butadiene and benzene in the cabins of moving motor vehicles and buses in Sydney, Australia." Atmospheric Environment 31(23): 3877-3885.

40. Elminir, H. K. (2005). "Dependence of urban air pollutants on meteorology, Science of The Total Environment 350 (1–3) (2005), p. 225.".
41. European Commission, 1999. European Commission, 1999. Council Directive 1999/30/EC relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Official Journal of the European Communities, Brussels, 22.04.1999.
42. European Commission, 2000. European Commission, 2000. Council Directive 2000/69/EC relating to limit values for benzene and carbon monoxide in ambient air. Official Journal of the European Communities, Brussels, 13.12.2000.

43. Farah, A. (1999). Characterising the concentration of particulate matter at an urban site. Auckland, The University of Auckland. Master of Science.

44. Fernández-Bremauntz, A. A., M. R. Ashmore, et al. (1993). "A survey of street sellers' exposure to carbon monoxide in Mexico City." Journal of exposure analysis and environmental epidemiology 3 Suppl 1: 23-35.125

45. Fernandez-Bremauntz, A. A. and M. R. Ashmore (1995). "Exposure of commuters to carbon monoxide in Mexico City-I.Measurement of in-vehicle concentrations." Atmospheric Environment 29(4): 525-532.

46. Fine, P. M., B. Chakrabarti, et al. (2004). "Diurnal Variations of Individual Organic Compound Constituents of Ultrafine and Accumulation Mode Particulate Matter in the Los Angeles Basin." Environmental Science and Technology 38(5):1296-1304.

47. Fitz, D. R., D. V. Pankratz, et al. (2004). Children's pollutant exposure during school bus commutes. Proceedings of the Air and Waste Management Association's Annual Conference and Exhibition, AWMA.

48. Flachsbart, P. G. (1999). "Human exposure to carbon monoxide from mobile sources." Chemosphere - Global Change Science 1(1-3): 301-329.

49. Frampton, M. W., M. J. Utell, et al. (2004). "Effects of exposure to ultrafine carbon particles in health subjects and subjects with asthma." Res Rep Health Effect Inst 126: 1–47.

50. Gee, I. L. and D. W. Raper (1999). "Commuter exposure to respirable particles inside buses and by bicycle." Science of the Total Environment 235(1-3): 403-405.

51. Geller, M. D., L. Ntziachristos, et al. (2006). "Physiochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars." Atmos Environ 40: 6730–6740.

52. Gidhagen, L., C. Johansson, et al. (2004). "Model simulations of NOx and ultrafine particles close to a Swedish highway." Environ Sci Technol 38: 6730–6740.

53. Gomez-Perales, J. E., R. N. Colvile, et al. (2007). "Bus, minibus, metro inter-comparison of commuters' exposure to air pollution in Mexico City." Atmospheric Environment 41(4): 890-901.
54. Gomez-Perales, J. E., R. N. Colvile, et al. (2004). "Commuters' exposure to PM2.5, CO, and benzene in public transport in the metropolitan area of Mexico City." Atmospheric Environment 38(8): 1219-1229.
55. Greaves, S., T. Issarayangyun, et al. (2008). "Exploring variability in pedestrian exposure to fine particulates (PM2.5) along a busy road." Atmospheric Environment 42(8): 1665-1676.

56. Gulliver, J. and D. J. Briggs (2004). "Personal exposure to particulate air pollution in transport microenvironments."Atmospheric Environment 38(1): 1-8.

57. Gulliver, J. and D. J. Briggs (2007). "Journey-time exposure to particulate air pollution." Atmospheric Environment 41(34): 7195-7207.

58. Han, X., M. Aguilar-Villalobos, et al. (2005). "Traffic-related occupational exposures to PM2.5, CO, and VOCs in Trujillo, Peru." International Journal of Occupational and Environmental Health 11(3): 276-288.

59. Harrison, P. T. C. (1998). "Health effects of indoor air pollutants." Issues Environ Sci Technol 1998(10).

60. Harrison, R. M., A. R. Deacon, et al. (1997). "Sources and processes affection concentrations of PM10 and PM2.5 126 particulate matter in Birmingham (U.K.)." Atmospheric Environment 31(24): 4103-4117.

61. Harrison, R. M., A. M. Jones, et al. (2004). "Field study of the influence of meteorological factors and traffic volumes upon suspended particle mass at urban roadside sites of differing geometries." Atmospheric Environment 38(37):6361-6369.

62. Holmes, N. S., L. Morawska, et al. (2005). "Spatial distribution of submicrometre particles and CO in an urban microscale environment." Atmospheric Environment 39(22): 3977-3988.

63. Jeong, C. H., G. J. Evans, et al. (2006). "Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, United States, and Toronto, Canada." Journal of the Air and Waste Management Association 56(4): 431-443.

64. Jeong, C. H., P. K. Hopke, et al. (2004). "Characteristics of Nucleation and Growth Events of Ultrafine Particles Measured in Rochester, NY." Environmental Science and Technology 38(7): 1933-1940.

65.Kaur, S. (2006). Exposure assessment of urban street users to particulate matter and carbon monoxide. , Imperial College London, University of London. Ph.D thesis.

66. Kaur, S., R. D. R. Clark, et al. (2006). "Exposure visualisation of ultrafine particle counts in a transport microenvironment." Atmospheric Environment 40(2): 386-398.

67. Kaur, S., M. Nieuwenhuijsen, et al. (2005). "Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and carbon monoxide in Central London, UK." Atmospheric Environment 39(20): 3629-3641.

68. Kaur, S. and M. J. Nieuwenhuijsen (2009). "Determinants of personal exposure to PM2.5, ultrafine particle counts, and CO in a transport microenvironment." Environmental Science and Technology 43(13): 4737-4743.

69. Kaur, S., M. J. Nieuwenhuijsen, et al. (2005). "Pedestrian exposure to air pollution along a major road in Central London, UK." Atmospheric Environment 39(38): 7307-7320.

70. Kaur, S., M. J. Nieuwenhuijsen, et al. (2007). "Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments." Atmospheric Environment 41(23): 4781-4810.
71. Khare, M. and P. Sharma (1999). "Performance evaluation of general finite line source model for Delhi traffic conditions." Transportation Research Part D: Transport and Environment 4(1): 65-70.

72. King, A. M., T. Pless-Mulloli, et al. (2000). "New Directions: TEOMs and the volatility of UK non-urban PM10: A regulatory dilemma." Atmospheric Environment 34(19): 3211-3212.

73. Kingham, S., J. Meaton, et al. (1998). "Assessment of exposure to traffic-related fumes during the journey to work." Transportation Research Part D: Transport and Environment 3(4): 271-274.

74. Kittelson, D. B. (1998). "Engines and nanoparticles: A review." Journal of Aerosol Science 29(5-6): 575-588.

75. Kittelson, D. B., W. F. Watts, et al. (2004). "Nanoparticle emissions on Minnesota highways." Atmospheric Environment127 38(1): 9-19.

76. Koushki, P. A., K. H. Al-Dhowalia, et al. (1992). "Vehicle occupant exposure to carbon monoxide." Journal of the Air and Waste Management Association 42(12): 1603-1608.

77. Korhonen H., Lehtinen K.E.J., and Kulmala M. Multicomponent aerosol dynamics model UHMA: model development and validation. Atmos Chem Phys 2004: 4: 757–771.
78. Krausse, B. and J. Mardaljevic (2005). "Patterns of drivers' exposure to particulate matter." Spatial Planning, Urban Form and Sustainable Transport.

79. Krausse, B. and J. Mardeljevic (2005). "Monitoring in-vehicle exposure to particulate matter: Project overview." Ninth Annual UK Review Meeting on Outdoor and Indoor Air Pollution Research, Leicester, UK, 20-21 April 2005.

80. Kuhlbusch, T. A. J., A. C. John, et al. (2001). "Diurnal variations of aerosol characteristics at a rural measuring site close to the Ruhr-Area, Germany." Atmospheric Environment 35(Supplement 1): 13-21.

81. Kulmala M., Vehkama¨ kiH ., Peta¨ ja¨ T., Maso D., LauriA., Kerminen V.M., Birmili W., and McMurry P.H. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 2004: 35: 143–176.
82. Lam, G. C. K., D. Y. C. Leung, et al. (1999). "Street-level concentrations of nitrogen dioxide and suspended particulate matter in Hong Kong." Atmospheric Environment 33(1): 1-11.
83. Levy, J. I., D. H. Bennett, et al. (2003). "Influence of traffic patterns on particulate matter and polycyclic aromatic hydrocarbon concentrations in Roxbury, Massachusetts." Journal of Exposure Analysis and Environmental Epidemiology 13(5): 364-371.

84. Levy, J. I., T. Dumyahn, et al. (2002). "Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts." Journal of Exposure Analysis and Environmental Epidemiology 12(2): 104-114.

85. Li, N., M. Hao, et al. (2003). "Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects." Clin Immunol 109: 250-265.

86. Li, X. Y., P. S. Gilmour, et al. (1996). "Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro." Thorax 51: 1216–1222.

87. Limasset, J. C., F. Diebold, et al. (1993). "Assessment of bus drivers' exposure to the pollutants of urban traffic."EXPOSITION DES CONDUCTEURS DE BUS URBAINS AUX POLLUTANTS DE LA CIRCULATION AUTOMOBILE 134: 39-49.
88. Liu, J. J., C. C. Chan, et al. (1994). "Predicting personal exposure levels to carbon monoxide (CO) in Taipei, based on actual CO measurements in microenvironments and a Monte Carlo simulation method." Atmospheric Environment 28(14): 2361-2368. 128
89. Lung, S. C., H. Y. Kao, et al. (2005). "Pedestrians’ exposure concentrations of PM2.5, ultrafine particles and particulate polycyclic aromatic hydrocarbons in Taiwan at intersections with different surroundings. Unpublished manuscript.".

90. Mackay, E. (2004). An investigation of the variation in personal exposure to carbon monoxide and particulates on the A660 in Leeds. , University of Leeds. Msc.

91. Matson, U., L. E. Ekberg, et al. (2004). "Measurement of ultrafine particles: A comparison of two handheld condensation particle counters." Aerosol Science and Technology 38(5): 487-495.
92. McNabola, A., B. M. Broderick, et al. (2007). "Optimal cycling and walking speed for minimum absorption of traffic emissions in the lungs." Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 42(13): 1999-2007.

93. McNabola, A., B. M. Broderick, et al. (2008). "Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin: Personal exposure and uptake." Atmospheric Environment 42(26): 6496-6512.

94. Ministry for the Environment and Ministry of Health (2002). Ambient Air Quality Guidelines. M. f. t. Environment, Ministry for the Environment.
95. Molnar, P., S. Janhall, et al. (2002). "Roadside measurements of fine and ultrafine particles at a major road north of Gothenburg." Atmospheric Environment 36(25): 4115-4123.

96. Nanzetta, M. K. and B. A. Holmeon (2004). "Roadside Particle Number Distributions and Relationships between Number Concentrations, Meteorology, and Traffic along a Northern California Freeway." Journal of the Air and Waste Management Association 54(5): 540-554.

97. Nerriere, E., D. Zmirou-Navier, et al. (2005). "Can we use fixed ambient air monitors to estimate population long-term exposure to air pollutants? The case of spatial variability in the Genotox ER study." Environmental Research 97(1): 32-42.

98. Nicholson, K. W., J. R. Branson, et al. (1991). "Field measurements of the below-cloud scavenging of particulate material. Atmospheric Environment 25A, pp. 771–777. ."

99. Nieuwenhuijsen, M. J. and M. B. Schenker (1998). "Determinants of personal dust exposure during field crop operations in California agriculture." American Industrial Hygiene Association Journal 59(1): 9-13.

100. O'Donoghue, R. T., L. W. Gill, et al. (2007). "Exposure to hydrocarbon concentrations while commuting or exercising in Dublin." Environment International 33(1): 1-8.
101. Oberdo¨ rster, G., J. Ferin, et al. (1994). "Correlation between particle size in vivo particle persistence, and lung injury." Environ Health Perspect 102(Suppl 6): 173-179.

102. Ott, W., P. Switzer, et al. (1994). "Carbon monoxide exposures inside an automobile traveling on an urban arterial highway." Journal of the Air and Waste Management Association 44(8): 1010-1018.

103. Penttinen, P., K. L. Timonen, et al. (2001). "Number concentration and size of particles in urban air: Effects on 129 spirometric lung function in adult asthmatic subjects." Environmental Health Perspectives 109(4): 319-323.

104. Peters, A., E. Wichmann, et al. (1997). "Respiratory effects are associated with the number of ultra-fine particles." Am J Respir Crit Care Med 155: 1376–1383.

105. Praml, G. and R. Schierl (2000). "Dust exposure in Munich public transportation: A comprehensive 4-year survey in buses and trams." International Archives of Occupational and Environmental Health 73(3): 209-214.
106. Rank, J., J. Folke, et al. (2001). "Differences in cyclists and car drivers exposure to air pollution from traffic in the city of Copenhagen." Science of the Total Environment 279(1-3): 131-136.

107. Rim, D., J. Siegel, et al. (2008). "Characteristics of cabin air quality in school buses in Central Texas." Atmospheric Environment 42(26): 6453-6464.

108. Rodes, C., L. Sheldon, et al. (1998). "Measuring concentrations of selected air pollutants inside California vehicles: Final Report, ARB Contract No. 95-339, prepared for California Environmental Agency & South Coast Air Quality Management District.".

109. Roorda-Knape, M. C., N. A. H. Janssen, et al. (1998). "Air pollution from traffic in city districts near major motorways." Atmospheric Environment 32(11): 1921-1930.

110. Rudolf, W. (1994). "Concentration of air pollutants inside cars driving on highways and in downtown areas." Science of the Total Environment 146-147: 433-444.

111. Sabin, L. D., E. Behrentz, et al. (2004). "Measuring self-pollution in school buses using a tracer gas technique." Atmospheric Environment 38(23): 3735-3746.

112. Scaperdas, A. and R. N. Colvile (1999). "Assessing the representativeness of monitoring data from an urban intersection site in central London, UK." Atmospheric Environment 33(4): 661-674.

113. Seinfeld, J. and N. Spyros (1998). Atmospheric chemistry and physics from air pollution to climate change. New York, John Wiley & Sons, Inc.

114. Sitzmann, B., M. Kendall, et al. (1996). "Personal exposure study of cyclists to airborne particulate matter in London."Journal of Aerosol Science 27(SUPPL.1).

115. Sitzmann, B., M. Kendall, et al. (1999). "Characterisation of airborne particles in London by computer-controlled scanning electron microscopy." Science of the Total Environment 241(1-3): 63-73.

116. Sto¨ lzel, M., S. Breitner, et al. (2006). "Daily mortality and particulate matter in different size classes in Erfurt, Germany." J Expo Sci Environ Epidemiol 15: doi:10.1038/sj.jes.7500538.

117. Suh, H. H. (2003). "Particulate matter." Exposure Assessment in Occupational and Environmental Epidemiology. Te Ara - the Encyclopedia of New Zealand, (2009). http://www.TeAra.govt.nz/en/auckland-region/5130
118. Touloumi, G., S. J. Pocock, et al. (1994). "Short-term effects of air pollution on daily mortality in Athens: A time-series analysis." International Journal of Epidemiology 23(5): 957-967.

119. Touloumi, G., E. Samoli, et al. (1996). "Daily mortality and "winter type" air pollution in Athens, Greece - A time series analysis within the APHEA project." Journal of Epidemiology and Community Health 50(SUPPL. 1).

120. Townsend, C. L. and R. L. Maynard (2002). "Effects on health of prolonged exposure to low concentrations of carbon monoxide." Occupational and Environmental Medicine 59(10): 708-711.

121. Tsai, D. H., Y. H. Wu, et al. (2008). "Comparisons of commuter's exposure to particulate matters while using different transportation modes." Science of the Total Environment 405(1-3): 71-77.

122. Turnkey Instruments (2002). "Dustmate fume and particle detector operating instructions. Turnkey Instruments Ltd.".

123. Van Wijnen, J. H. and S. C. Van Der Zee (1998). "Traffic-related air pollutants: Exposure of road users and populations living near busy roads." Reviews on Environmental Health 13(1-2): 1-25.

124. Van Wijnen, J. H., A. P. Verhoeff, et al. (1995). "The exposure of cyclists, car drivers and pedestrians to traffic related air pollutants." International Archives of Occupational and Environmental Health 67(3): 187-193.

125. Vellopoulou, A. V. and M. R. Ashmore (1998). "Personal exposures to carbon monoxide in the city of Athens: I. Commuters' exposures." Environment International 24(7): 713-720.

126. Vinzents, P. S., P. Moller, et al. (2005). "Personal exposure to ultrafine particles and oxidative DNA damage." Environmental Health Perspectives 113(11): 1485-1490.

127. Vinzents, P. S., P. Moller, et al. (2005). "Personal exposure to ultrafine particles and oxidative DNA damage." Environ Health Perspect 113: 1485–1490.

128. Von Klot, S., G. Wolke, et al. (2002). "Increased asthma medication use in association with ambient fine and ultrafine particles." Eur Respir 20: 691–702.

129. Weichenthal, S., A. Dufresne, et al. (2008). "Determinants of ultrafine particle exposures in transportation environments: Findings of an 8-month survey conducted in Montr 茅 al, Canada." Journal of Exposure Science and Environmental Epidemiology 18(6): 551-563.

130. Weijers, E. P., A. Y. Khlystov, et al. (2004). "Variability of particulate matter concentrations along roads and motorways determined by a moving measurement unit." Atmospheric Environment 38(19): 2993-3002.

131. Westerdahl, D., S. Fruin, et al. (2005). "Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles." Atmospheric Environment 39(20): 3597-3610.

132. Wichmann, H. E., C. Spix, et al. (2000). "Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: role of particle number and particle mass." Res Rep Health Eff Inst 98: 5–86.

133. Wolff, G. T. (1985). "Characteristics and consequences of soot in the atmosphere." Environment International 11(2-4): 131. 259-269.

134. Wright, G. R., S. Jewczyk, et al. (1975). "Carbon monoxide in the urban atmosphere. Hazards to the pedestrian and the street worker." Archives of Environmental Health 30(3): 123-129.

135. Wu, C. F., R. J. Delfino, et al. (2005). "Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers." Atmospheric Environment 39(19): 3457-3469.

136. Yanosky, J. D., P. L. Williams, et al. (2002). "A comparison of two direct-reading aerosol monitors with the federal reference method for PM2.5 in indoor air." Atmospheric Environment 36(1): 107-113.

137. Zagury, E., Y. Le Moullec, et al. (2000). "Exposure of Paris taxi drivers to automobile air pollutants within their vehicles." Occupational and Environmental Medicine 57(6): 406-410.

138. Zhang, K. M., A. S. Wexler, et al. (2004). "Evolution of particle number distribution near roadways. Part II: The 'Road-to-Ambient' process." Atmospheric Environment 38(38): 6655-6665.

139. Zhang, Q., C. O. Stanier, et al. (2004). "Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry." Environmental Science and Technology 38(18): 4797-4809.

140. Zhu, Y., W. C. Hinds, et al. (2002). "Study of ultrafine particles near a major highway with heavy-duty diesel traffic." Atmospheric Environment 36(27): 4323-4335.

141. Zhu, Y., W. C. Hinds, et al. (2002). "Concentration and size distribution of ultrafine particles near a major highway." Journal of the Air and Waste Management Association 52(9): 1032-1042.

142. Zhu, Y., T. Kuhn, et al. (2006). "Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway." Environmental Science and Technology 40(8): 2531-2536.

143. Zhu, Y. F., N. Yu, et al. (2006). "Field comparison of P-trak and condensation particle counters." Aerosol Science and Technology 40(6): 422-430.
页: [1]
查看完整版本: Pollution Meteorology/污染气象学